Deleted interpolation and density sharing for continuous hidden Markov models
نویسندگان
چکیده
As one of the most powerful smoothing techniques, deleted interpolation has been widely used in both discrete and semi-continuous hidden Markov model (HMM) based speech recognition systems. For continuous HMMs, most smoothing techniques are carried out on the parameters themselves such as Gaussian mean or covariance parameters. In this paper, we propose to smooth the probability density values instead of the parameters of continuous HMMs. This allows us to use most of the existing smoothing techniques for both discrete and continuous HMMs. We also point out that our deleted interpolation can be regarded as a parameter sharing technique. We further generalize this sharing to the probability density function (PDF) level, in which each PDF becomes a basic unit and can be freely shared across any Markov state. For a wide range of dictation experiments, deleted interpolation reduced the word error rate by 11% to 23% over other simple parameter smoothing techniques like flooring. Generic PDF sharing further reduced the error rate by 3%.
منابع مشابه
Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملContext dependent tree based transforms for phonetic speech recognition
This paper presents a novel method for modeling phonetic context using linear context transforms. Initial investigations have shown the feasibility of synthesising context dependent models from context independent models through weighted interpolation of the peripheral states of a given hidden markov model with its adjacent model. This idea can be further extended, to maximum likelihood estimat...
متن کاملImproved Bayesian learning of hidden Markov models for speaker adaptation
We propose an improved maximum a posteriori (MAP) learning algorithm of continuous-density hidden Markov model (CDHMM) parameters for speaker adaptation. The algorithm is developed by sequentially combining three adaptation approaches. First, the clusters of speaker-independent HMM parameters are locally transformed through a group of transformation functions. Then, the transformed HMM paramete...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کامل